统计211
标题:
面板数据的R方很小的看法
[打印本页]
作者:
211TJ金老师
时间:
2015-11-11 16:50
标题:
面板数据的R方很小的看法
我们通常做完回归结果,喜欢看系数大小及系数在显著水平的显著性如何。但有些人喜欢看R2值是多少,认为这个值越高,模型就是好的。我可以很明确的告诉你,如果你这么想就是大错特错了。
R2只能说明在现有的数据中,你的模型与已有数据的拟合程度比较高。但是你能说真实的模型就是这个样子吗?
经常做数据分析的人会发现,做时间序列模型R2通常都会很高,很多情况达到0.9左右,但是做面板数据的人会发现,R2值一般会很低,有时候只在0.1左右,如果有同一个主题,一个用时间序列数据做,一个用面板数据做,R2值时间序列方法远高于面板数据方法,那能说明时间序列数据模型优于面板数据模型吗?答案显然是不能的。
你会发现即使时间序列模型的R2非常高,但是拿到现实当中去预测或者进行分析,还是有偏差。每个模型再做分析之前,一定要理解模型的前提条件,时间序列数据的R2虽然很高,但是它不能考虑很多面板数据所考虑到的特性。
而且做计量模型的时候你会发现有时候R2值会很高,但是系数显著性非常低,那你拿个R2达到0.99,但是系数显著性及F值的显著性都不达标的好呢,还是拿个R2只有0.2,但系数显著性及F值得显著性都达标的结果好呢?
就我个人,我肯定会选择第二种结果。
因此我认为R2,只是数据的一个拟合程度,但不能死认准R2高低来评价模型的好坏。
当然建模分析的人,可能会注重R方,但在应用计量分析中不能一味的关注R方的大小,因为很多模型是不会考虑R方问题。
作者:
275932488
时间:
2015-11-13 09:50
R2太低,意味着入选的自变量能解释因变量的比例很小,那这模型就没有什么意义了吧?
作者:
211TJ金老师
时间:
2015-11-13 11:09
275932488 发表于 2015-11-13 09:50
R2太低,意味着入选的自变量能解释因变量的比例很小,那这模型就没有什么意义了吧?
R方固然越大是越好的,起争议的可能性越小。但一些非线性模型不是很在意R方,因此在面板数据这种三维数据中,很难达到像时间序列那么高的R2值,因此我要太纠结面板数据或非线性回归模型中的R2.
作者:
荆笨
时间:
2015-11-13 16:47
作者:
211TJ金老师
时间:
2015-11-13 21:10
tobit或者probit,分位数回归中出现的R^2都是伪R^2,也就是说并不是和OLS中报告相同,OLS中报告的可决系数可表明这个拟合模型能够多大程度上解释总体样本(根据可决系数的定义),然后像tobit或者probit,分位数回归等回归是无法按照ols的公式计算他的可决系数(根据模型回归的原理),所以计算像ols这种可决系数来判断模型好坏是不行的,但是为了在一定程度上表明模型的好看,就出现了这种所谓的伪可决系数(实际上是采用一些类似于OLS那种可决系数的计算方法)来计算的,伪可决系数的计算方法有很多。但是解释意义和ols里面的不一样。-转自网络
作者:
leeyaya
时间:
2016-4-15 22:05
对于这个问题中外教材的见解差别很明显,交代不够就难免让人产生一种错觉或者误解,楼上说的很好!
欢迎光临 统计211 (http://www.tj211.com/)
Powered by Discuz! X3.2