严格说来,回答你的问题需要讲四个W:
What’s normal transformation?(什么是正态转换)
Why do we need normal transformation?(为何做正态转换)
When is normal transformation needed? (何时做正态转化)
How can we do normal transformation?(如何做正态转化)
我担心如果只讲How(如何做),也许有些初学者不分场合,误用滥用。但是,我同样担心如果从ABC讲起,难免过分啰嗦,甚至有藐视大家的智商之嫌。所幸者,我们已经进入Web 2.0年代,有关上述What, Why, When问题的答案网上唾手可得。如果对这些问题不甚了了的读者,强烈建议先到google上用“How to transform data to normal distribution”搜一下(或点击下面的“前10条”),前10条几乎每篇都是必读的经典。
有了上述交代,我们可以比较放心地来讨论如何做正态转化的问题了。具体来说,涉及以下几步:
第一步,查看原始变量的分布形状及其描述参数(Skewness和Kurtosis)。这可以用Frequencies中的Histogram或Examination中的BoxPlot,如:
有两个方法
1:
FREQUENCIES VAR = x / STATISTICS = SKEW, KURT / HISTOGRAM = NORMAL.
EXAMINE VAR = x / STATISTICS = SKEW, KURT / PLOT = BOXPLOT.
第二步,根据变量的分布形状,决定是否做转换。这里,主要是看一下两个问题:
左右是否对称,也就是看Skewness(偏差度)的取值。如果Skewness为0,则是完全对称(但罕见);如果Skewness为正值,则说明该变量的分布为positively skewed(正偏态,见下图1b);如果Skewness为负值,则说明该变量的分布为negatively skewed(负偏态,见图1a)。然而,肉眼直观检查,往往无法判断偏态的分布是否与对称的正态分布有“显著”差别,所以需要做显著性检验。如同其它统计显著性检验一样,Skewness的绝对值如大于其标准误差的1.96倍,就被认为是与正态分布有显著差别。如果检验结果显著,我们也许(注意这里我用的是“也许”一词)可以通过转换来达到或接近对称,但见注1中的说明。